Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
PNAS Nexus ; 1(3): pgac081, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2235005

ABSTRACT

To evaluate the joint impact of childhood vaccination rates and school masking policies on community transmission and severe outcomes due to COVID-19, we utilized a stochastic, agent-based simulation of North Carolina to test 24 health policy scenarios. In these scenarios, we varied the childhood (ages 5 to 19) vaccination rate relative to the adult's (ages 20 to 64) vaccination rate and the masking relaxation policies in schools. We measured the overall incidence of disease, COVID-19-related hospitalization, and mortality from 2021 July 1 to 2023 July 1. Our simulation estimates that removing all masks in schools in January 2022 could lead to a 31% to 45%, 23% to 35%, and 13% to 19% increase in cumulative infections for ages 5 to 9, 10 to 19, and the total population, respectively, depending on the childhood vaccination rate. Additionally, achieving a childhood vaccine uptake rate of 50% of adults could lead to a 31% to 39% reduction in peak hospitalizations overall masking scenarios compared with not vaccinating this group. Finally, our simulation estimates that increasing vaccination uptake for the entire eligible population can reduce peak hospitalizations in 2022 by an average of 83% and 87% across all masking scenarios compared to the scenarios where no children are vaccinated. Our simulation suggests that high vaccination uptake among both children and adults is necessary to mitigate the increase in infections from mask removal in schools and workplaces.

2.
PNAS Nexus ; 1(1): pgab004, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-2222690

ABSTRACT

SARS-CoV-2 vaccination strategies were designed to reduce COVID-19 mortality, morbidity, and health inequities. To assess the impact of vaccination strategies on disparities in COVID-19 burden among historically marginalized populations (HMPs), e.g. Black race and Hispanic ethnicity, we used an agent-based simulation model, populated with census-tract data from North Carolina. We projected COVID-19 deaths, hospitalizations, and cases from 2020 July 1 to 2021 December 31, and estimated racial/ethnic disparities in COVID-19 outcomes. We modeled 2-stage vaccination prioritization scenarios applied to sub-groups including essential workers, older adults (65+), adults with high-risk health conditions, HMPs, or people in low-income tracts. Additionally, we estimated the effects of maximal uptake (100% for HMP vs. 100% for everyone), and distribution to only susceptible people. We found strategies prioritizing essential workers, then older adults led to the largest mortality and case reductions compared to no prioritization. Under baseline uptake scenarios, the age-adjusted mortality for HMPs was higher (e.g. 33.3%-34.1% higher for the Black population and 13.3%-17.0% for the Hispanic population) compared to the White population. The burden on HMPs decreased only when uptake was increased to 100% in HMPs; however, the Black population still had the highest relative mortality rate even when targeted distribution strategies were employed. If prioritization schemes were not paired with increased uptake in HMPs, disparities did not improve. The vaccination strategies publicly outlined were insufficient, exacerbating disparities between racial and ethnic groups. Strategies targeted to increase vaccine uptake among HMPs are needed to ensure equitable distribution and minimize disparities in outcomes.

3.
PNAS nexus ; 1(3), 2022.
Article in English | EuropePMC | ID: covidwho-1958351

ABSTRACT

To evaluate the joint impact of childhood vaccination rates and school masking policies on community transmission and severe outcomes due to COVID-19, we utilized a stochastic, agent-based simulation of North Carolina to test 24 health policy scenarios. In these scenarios, we varied the childhood (ages 5 to 19) vaccination rate relative to the adult's (ages 20 to 64) vaccination rate and the masking relaxation policies in schools. We measured the overall incidence of disease, COVID-19-related hospitalization, and mortality from 2021 July 1 to 2023 July 1. Our simulation estimates that removing all masks in schools in January 2022 could lead to a 31% to 45%, 23% to 35%, and 13% to 19% increase in cumulative infections for ages 5 to 9, 10 to 19, and the total population, respectively, depending on the childhood vaccination rate. Additionally, achieving a childhood vaccine uptake rate of 50% of adults could lead to a 31% to 39% reduction in peak hospitalizations overall masking scenarios compared with not vaccinating this group. Finally, our simulation estimates that increasing vaccination uptake for the entire eligible population can reduce peak hospitalizations in 2022 by an average of 83% and 87% across all masking scenarios compared to the scenarios where no children are vaccinated. Our simulation suggests that high vaccination uptake among both children and adults is necessary to mitigate the increase in infections from mask removal in schools and workplaces.

SELECTION OF CITATIONS
SEARCH DETAIL